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synopsis 
A systems approach is applied to the analysis of chromatogram resolution dispenion, 

or zone broadening, in gel permeation chromatography (GPC). Three possible sources 
of dispersion are considered; these are: the packed columns; the empty tubing be- 
tween pump and columns, columns and detector, etc.; and the detection system, vie., 
the differential refractometer cell. It is shown that empty tubing can contribute sig- 
nificantly to the degree of dispersion and to skewness of elution curves and that this 
dispersion should depend on molecular weight of solute (polymer) and diameter and 
length of the tubing. The importance of dispersion in the empty tubing is compared 
with that in the packed columns and refractometer cell. 

THEORY 

Generally in GPC, a pulse input of solute in solution with concentration 
Co (g/l.) and width e (sec) is introduced via a sample injection loop into a 
stream of solvent flowing with volumetric flow rate u. This may be repre- 
sented as a rectangular pulse with 

ucoe = A 

and 

ue = v, 
where A and V ,  are weight of solute and volume of solution injected, re- 
spectively. If e is sufficiently small, the rectangular pulse may be approxi- 
mated by an impulse, or delta, function 

O l t l t  
t > e and t < 0 6 ( t )  = 

such that 

lim uc0 s,’ s(t)dt = A 
E - + O  

* Present address, General Electric Company, Pittsfield, Massachusetts. 
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and 
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lim u 1 G(t1d.t = v,. 
e - 0  

In  this work it is also desirable to consider the introduction of a step input 
of solute 

1 for t > 0 
0 for t < 0 l ( t )  = 

such that 
uCo*t*l(t) = A(t)  

ut.l(t) = V,(t). 
and 

Since both the packed columns and the empty tubing in GPC are actually 
cylinders through which solutions flow axially, a differential mass balance in 
cylindrical coordinates may be used to formulate mathematical models for 
solute dispersion in both: 

ac ac i a  - =  - v - - + D R - -  
a t  az T a r  

where c = solute concentration at any point and at any time; v = solution 
velocity at any point (v is, in general, a function of r ) ;  and DR, DL = dis- 
persion coefficients for the solute in solution in the radial and longitudinal 
(axial) directions, respectively. This equation refers to a differential ele- 
ment located at any point in a cylinder of radius, R, and length, L. The 
three terms on the right-hand side describe net convective axial, diffusive 
radial and diffusive axial transport rates per unit volume, respectively, at 
any point. 

Equation 1 may be specialized in order to describe solute dispersion in 
either packed columns or empty tubing. For example, when the ratio of 
column diameter to particle diameter, dT/d,, in a packed column exceeds a 
value of approximately 30, the interstitial solution velocity v may be con- 
sidered to be uniform across the column diameter' and simply equal to the 
average value g everywhere : 

where a, the interstitial volume fraction of the column, is 

and V ,  = total volume of the packed column. 
It is also well known that D, < DL in packed columns.2 However, for 

pulse and step input functions of the type used in this work, since plug flow 
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prevails, bc/& = 0 in eq. 1 and the packed column dispersion model be- 
comes 

Equation 2 has been used previo~sly.~-6 
In empty tubing for a solution under laminar flow conditions 

where vo is the solution velocity at the tube axis. Moreover, DR = DL = D 
where D is the molecular diffusivity of the solute in solution. The disper- 
sion model for the empty tubing then becomes, from eq. 1, 

@ at = - vo [I - (a)'] 2 + D [I? r d r  ( r z )  + $1 (3) 

Regarding dispersion in the refractometer cell, it is assumed in this work 
that the cell behaves like a perfectly mixed vessel of volume Vc. This repre- 
sents the most extreme model of mixing possible (complete backmixing) 
and a mass balance for the solute gives the cell dispersion model 

where c = solute concentration (uniform) in the cell at any time, and c, 
= solute concentration at  the exit of the empty tubing connected to the 
entrance of the cell. The two terms on the right-hand side of eq. 4 repre- 
sent transport rate into the cell from the connecting tubing and transport 
rate out of the cell, respectively. 

To completely describe extraparticle dispersion of a monodispersed 
solute in a system which consists of all three of the above components, it is 
necessary to solve at  least three consecutive differential equations, with the 
solution of one being the initial condition for the next, and so on. The 
initial condition for the first equation may be a rectangular pulse or a step 
function and the solution of the last (eq. 4) should represent the elution 
curve as detected by the refractometer. A rectangular pulse input gives 
the usual GPC elution curve. 

It is instructive from a physical viewpoint to consider certain limiting 
cases of the dispersion models which identify so-called dispersion regimes. 
These regimes lend themselves to simpler mathematical description and 
will be introduced here via a characteristic-time approach. 

Since a diffusion coefficient is actually defined as a characteristic diffu- 
sion length, squared, divided by a characteristic diffusion time, it is reason- 
able to define X R  = R2/D,  as a characteristic time associated with radial 
dispersion and X L  = L2/DL as a characteristic time associated with axial 
dispersion. 
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Moreover, the following definitions are also appropriate: 8 = V/u = 
L/a is mean residence time in the cylinder and also a characteristic time 
associated with convective transport through the cylinder where 

Vo for a packed column, its interstitial volume 
v = { v f  or an empty tube, its volume 

and e, = Vc/u is mean residence time in the cell and also a characteristic 
time associated with transport through the cell. 

It is now apparent that radial dispersion in the cylinders will be small if 

R% 
XR >> e or if DRL - - = Ta >> 1 

and axial dispersion wil l  be small if 

La 
X L  >> e or if - = PeL >> 1 

DL 

where PeL is the well-known longitudinal Peclet number (dimensionless) 
and Ta is a dimensionless number which is defined in the present work as 
the Taylor number for reasons which will become apparent. In both cases, 
as e becomes large, those mechanisms responsible for dispersion in the 
cylinder will have more time to occur and therefore will become more pro- 
nounced. Thus, dispersion in the cell will become unimportant relative to 
the cylinder if ec is sufficiently small. This criterion may be written as 

e, << e 

u, << u 
or, more precisely, 

where ue and u are the standard deviations for cell and cylinder dispersion, 
respectively. 

The Taylor and Peclet numbers as criteria for the importance of radial 
and axial dispersion may be derived in a more formal way by writing eq. (1) 
in dimensionless form 

(5) 
ac* 21 ac* 1 1 a bC* - = - - -  + - - -  

with the aid of the following dimensionless variables : 

at* 

The consequences of Ta >> 1 and PeL >> 1 are obvious from eq. (5) and the 
dispersion regimes previously alluded to may now be introduced. 
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THE PACKED COLUMN 

For plug flow in a packed column, the dispersion model, eq. (2), in 
dimensionless form is 

ac* ac* 1 azC* +--- at* az* Pe, a ~ * ~  - = - -  

and after transformation via x* = z* - t*, it becomes 

ac* 1 aZC* 
bt * Pe, ax*2 

- -. 

Its solution for an impulse solute input,6 evaluated at the column exit (z* = 
1)) is 

where C** = CVo/A. 
If dispersion in time of an elution curve represented by this function is 

small relative to the mean residence time in the column, i.e., if t* o 1 with 
respect to the entire elution curve, then it may be approximated by the 
Gaussian distribution 

where V ,  = ut is retention volume and V,* = VJw3 = t* is dimensionless 
retention volume or time. This approximation has previously been dis- 
cussed? 

Clearly the peak value of c**, c**,,,=, in eq. (6) occurs at the mean value of 
t (t = e) or V ,  (V,* = 1) and the variance is given by 

so that u* is actually a measure of relative dispersion of the elution curve. 
Thus, if eq. (6) is to accurately represent dispersion in a packed column it 
follows that u* must be small. More specifically, this criterion may be 
written as 

u*v << 1 or4 PeL >> 2. 

If the elution curve for a pulse solute input is Gaussian, then the elution 
curve for a step input6 must be 

c* = !{I 2 - erf [J" 4v,* (1 - V,*,D 
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where 

is the error function and = 1/PeL/4Vr* (1 - Vr*). 
In  the design of packed-bed chemical reactors, the criterion Pe, > 100 

is sufficient to guarantee that the effects of axial dispersion are negligible. 
Moveover, engineering correlations2 for liquids flowing through packed 
columns with values for the Reynolds number Re, in excess of approxi- 
mately 0.1 show that the dimensionless number, another Peclet number, 

d,@ Pep = - 
DL 

is virtually independent of Re,, for a given liquid-particle system and that 
for many Newtonian liquid systems it has a value within the region 

0.5 < Pep < 2. (9) 

This implies that DL is proportional to ii and is so because eddy diffusion is 
the primary mechanism contributing to axial dispersion. The Reynolds 
number for packed columns is defined as 

dP@P Re, = - 
CC 

where p = liquid density and p = liquid viscosity. 
As 8 becomes very small, Pep decremes in proportion to Re, ,which in- 

dicates that DL approaches a constant value of the order of the molecular 
diffusivity, D. Van Deemter et al.' have concluded from the data of 
Simpson and Wheatons for the system ethylene glycol-water with molec- 
ular diffusivity of the order of cm2/secs and particle diameters d, 
within the range of 2Ofi to 2 0 0 ~  that molecular diffusion played a negligible 
role in axial dispersion even for values of Re, less than 0.1. 

In  GPC the following values are typical: u = 1 cc/min, d ,  = 50, dT = 
0.307 in., L = 4 ft,  and a = 0.35, so that d,/d, = 155 and L / d ,  = 2.4 X 
lo4. Typical approximate values for Re, and Pe,, assuming that inequality 
(9) is still valid, are then approximately 

Re, = 0.05 and lo4 < PeL < 5 X 10'. 

Thus, it might be reasonable to expect dispersion in the packed column to 
be small in the relative sense, symmetrical (Gaussian) and insensitive to 
molecular weight of the solute. The last conclusion is based upon the fact 
that D for ODCB (in toluene) also has a value of the order of 10" cm2/sec 
and D for polymers is even two orders of magnitude smaller. For example, 
D for polystyrene (in to1uene)'O is of the order of 10-7 cm2/sec. This 
means that eddy diffusivity and not molecular diffusivity probably domi- 
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nates DL under typical GPC conditions. If this is the case, then a sample 
calculation for, say, V ,  = Vo = 21 cc using eq. (7) shows that the following 
approximate values for absolute dispersion u might be expected: 

0.1 min < u < 0.3 min 

or, in terms of retention volume, 

0.1 cc < u, < 0.3 CC. 

There is, however, certainly some justification for caution when specu- 
lating about eddy diffusion in polymer solutions in view of the fact that 
polymers, even at low concentrations, not only dramatically affect the 
viscosity of the solvents in which they are dissolved but may also cause 
them to exhibit viscoelastic or other non-Newtonian flow behavior. Very 
little data are available on dispersion in polymer solutions flowing through 
packed columns. However, there is some evidence" that Pep is indepen- 
dent of Re, to values of Re, as low as 0.03 and that it has a value of approxi- 
mately 0.2, slightly less than the lower value used in the above example. 

The conventional efficiency parameters used in chromatography may 
also, in modified form, be used to characterize extraparticle dispersion. 
These are: plate count n, now actually the number of theoretical mixing 
stages; and HETP, now actually the height equivalent to a theoretical 
mixing stage : 

Clearly, when Pep = 2, the column may be represented by the equivalent 
model of L / d p  mixers in series, as follows : 

L 
n = - and HETP = dp. 

d P  

THE EMPTY TUBING 

For typical GPC flow rates, tube diameters and solute concentrations, 
say, 1 cc/min, 1 mm and 2 g/l. Newtonian laminar flow conditions should 
prevail with 

Re = *' N 30, 
P 

Dispersion should then depend on the molecular dausivity of the solute 
(DR = D, = D )  and therefore on its molecular weight. 

It is evident from eq. (5)  that two extreme, distinctly different dispersion 
regimes are possible and that both are subject to simple mathematical 
analysis. The first will be called the segregated flow regime and the second, 
the Taylor regime. 
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The Segregated Flow Regime 
This regime is approached when both 

R2fi Le 
T u a -  >> 1 and Pe 5 - >> 1 DL D 

and clearly occurs when D is small, as with large molecules. However, it 
may also occur for constant u when L is small or R is large, and it obeys the 
simple dispersion model 

bC* 2, ac* ac* 
at* fi az* 2 [l - T * ~ ]  g - = - - - = -  

whose solution for a rectangular pulse input, evaluated at the tube exit 
(z* = 1)) is 

c,* = 1 t* - Oe5 ] - 1 [t* - €* - Oo5 1. E (1 - r*2> (1 - r*2) 
The elution curve for segregated flow, obtained from 

lR 2uc,*v(r)rdr 

TRC c* = = 4 6 c,*(l - r*2)r*dr* 

is, for a rectangular pulse input, 

or, in dimensionless form, 

c* = [ 1 - (“)‘I 1(V,* - 0.5) - [ 1 - ( 0.5 )2] 

v,* v,* - v,* 
X l(Vr* - V,* - 0.5) (lob) 

where Vs* = V, /d  = B* is dimensionless sample injection volume or time. 
For a step solute input, the solution of eq. (3a), evaluated at the tube 

exit, is 

[ (1 - 0*5 r*2> 1 c,* = 1 t* - 

and, therefore, the elution curve is simply 

c = co {[l - ( ~ ) ‘ ] l ( t  0.5 e - 0.58)) 

or, in dimensionless form, 

c* = [l - (6) ’ ]1(Vr* - 0.5). 
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An elution curve represented by eqs. (loa) or (lob) is highly unsymmetri- 
cal (skewed). Its peak lies to the left of its mean and it has a long tail. 

The Taylor Regime 
This regime is approached when 

R b  Ta = - << 1 
DL 

and 

L8 
Pe = - >> 1. D 

The first criterion, inequality (12)) which may also be written as 

L R2 ->> -) S D  

is obviously met when D becomes large; however, it is compatible with the 
second, inequality (13)) for constant u only when R2 << L2 or R << L. 

This type of dispersion was first analyzed by Taylor12 who gave a more 
precise criterion for its existence than inequality (12a), namely, 

L 2R2 
- >> ~ 

8 (3.8)2D 

and is now commonly referred to as “Taylor axial diffusion.” It is called 
axial diffusion although it is actually a manifestation of the combined effects 
of a velocity profile and radial molecular diffusion with the virtual absence, 
or at least comparative unimportance, of true (molecular) axial diffusion. 
The reason for this is, in essence, the remarkable fact that radial diffusion, if 
given the opportunity, partially cancels the dispersion effect of the velocity 
profile in such a way as to give the resultant dispersion the appearance of 
being genuine axial diffusion; it even obeys the usual axial dispersion model, 
eqs. (2)) (2a), or (2b), with DL given by12 

4Rb2 
1920’ 

DL = - 

As a consequence, the elution curve in the Taylor regime for a pulse 
solute input is symmetrical (Gaussian) and is described by eq. (6) if relative 
dispersion is small in the sense previously discussed. That this must be 
the case may be seen by combining inequality (14) with eq. (15), which gives 

LS PeL = - >> 7 .  
DL 

Thus, it appears that a system in order merely to qualify for the Taylor 
regime exhibits small relative dispersion. 
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An order-of-magnitude calculation for the Taylor regime shows that when 
PeL has a reasonable value of, say, 200, in order for u, to have a value com- 
parable to that of one packed column, say, 0.2 cc, it is necessary to have 100 
in. (L) of empty tubing when u = 1 cc/min and d ,  = 1 mm. This result is 
obtained from eq. (7) and requires that D for the solute have a value of ap- 
proximately 9 X cm2/sec, from eq. (15). Furthermore, from inequality 
(14), ODCB in toluene may just qualify for the Taylor regime in 100 in. of 
empty tubing; certainly then, polystyrene (D - lo-’) in toluene will not. 

General Case 

When dispersion in empty tubing is unsymmetrical and broader than ex- 
pected of Taylor axial diffusion and yet does not meet the requirements of 
the segregated flow regime, eq. (3) must be solved for the appropriate input 
functions. No analytical solution of this equation is available but a 
numerical method for solving it with the aid of a high-speed digital com- 
puter has been developed13 for step input functions. 

It is reasonable to expect polymer solutions flowing through empty 
tubing to exhibit dispersion between the two regimes and to expect the 
shape as well as the breadth of this dispersion to be sensitive to molecular 
weight of the polymer, certainly to a greater degree than in packed columns. 

THE REFRACTOMETER CELL 
In  order to compute the solute concentration “seen” by the detector 

(refractometer) and include the dispersion caused by the refractometer cell 
itself, i.e., to simulate as accurately as possible the actual elution curves, 
it is necessary to substitute the appropriate solution of eq. (l), evalu- 
ated at  the cell entrance, for ce in eq. (4) and solve the resulting equation 
for c. For the special cases considered in this work it is sufficient to 
replace the entire integral in eq. (4) with uc(t)  either from eqs. (6) or (8), 
if the column is connected directly to the refractometer cell, or from eqs. 
(10a) or (lla), when tubing is connected to the cell, which is the usual case. 
The reason for this is that the integration operation is tantamount to cup- 
averaging14 the solute concentration issuing from the tubing. For the 
packed column v is constant and bc/br = 0 so that cup-averaging is 
unnecessary. For the empty tubing, the integration has already been 
performed; in fact, it is precisely the operation used to transform the solu- 
tions of eq. (3a), evaluated at the tube exit, into eqs. (10a) and (lla). 

Dispersion in the completely backmixed cell model, eq. (4), is given by 
the simple expression 

For a standard Waters Associates refractometer cell (V ,  = 0.07 cc) and 
a typical flow rate, u = 1 cc/min, dispersion in the cell, uc = 8, = 0.07 
min, is small relative to that in a typical packed column (Vo = 21 cc) or 
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empty tube (V, - 0.02 cc/in.). "hue, approximate elution curves may 
be computed directly from eqs. (6) or (8) when little or no tubing is present 
between column and cell and from eqs. (lob) or (llb) when an appreciable 
length of tubing is connected to the cell inlet. 

It is appropriate at this point to elaborate briefly on the concept of 
relative dispersion, u/O, which has been discussed elsewhere in connection 
with distribution of residence times in separation processes7 and molecular 
weight distributions of polymers.'6116 It is well known that the standard 
deviation u is a measure of absolute breadth or dispersion of any distri- 
bution. However, absolute breadth is not always the most appropriate 
parameter with which to characterize a distribution having a physical 
origin; the selection of an appropriate parameter depends upon the precise 
nature of the information desired. For example, the dispersion index 

is used by polymer scientists and engineers to characterize molecular weight 
dispersion in polymers, where f f N ,  B N  = number-average degree of poly- 
merization and molecular weight, respectively, and %w, Bw = weigh& 
average degree of polymerization and molecular weight, reapectively. 

What is actually desired in this case is a measure of the effect of mol&ular 
weight distribution on the physical properties of a polymer. For the 
same value of absolute molecular weight dispersion, uN, this effect will clearly 
be more pronounced in a polymer having a low average molecular weight, 
f f N ,  than in one having a high average. Hence, a measure of relative 
dispersion, uN/gN, is actually desired, i.e., absolute breadth of the distribu- 
tion relative to the mean size of the molecules. Since this is what D 
actually measures, as seen from the relationshipu 

( E > " = D - l  

it appears to be an appropriate parameter to use in this case. 
Similarly, in the design of packed bed reactors or chromatographic 

columns, a large value for n indicates an e5cient reaction or separation 
column. The reason for this is, again, that relative dispersion (l/n) is 
the important parameter since it measures dispersion in the column relative 
to its total reaction or separation capability. 

Now, in the case of extraparticle dispersion in GPC columns or in the 
empty tubing, 2/PeL characterizes relative dispersion, whereas u charac- 
terizes absolute dispersion. However, the latter quantity is actually 
what is measured by the detector. Hence, even though PeL may be 
larger for packed GPC columns than for .the empty tubing, it is still possible 
for u to be larger as well, depending upon the relative values for 0. Thus, 
the packed column might affect chromatogram resolution more seriously 
than the empty tubing. 
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In conclusion, then, when contrasting the dispersion effects of columns 
versus empty tubing, it is important to compare Vo and V ,  as well as the 
values for PeL. 
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