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Synopsis

A systems approach is applied to the analysis of chromatogram resolution dispersion,
or zone broadening, in gel permeation chromatography (GPC). Three possible sources
of dispersion are considered; these are: the packed columns; the empty tubing be-
tween pump and columns, columns and detector, etc.; and the detection system, viz.,
the differential refractometer cell. It is shown that empty tubing can contribute sig-
nificantly to the degree of dispersion and to skewness of elution curves and that this
dispersion should depend on molecular weight of solute (polymer) and diameter and
length of the tubing. The importance of dispersion in the empty tubing is compared
with that in the packed columns and refractometer cell.

THEORY

Generally in GPC, a pulse input of solute in solution with concentration
Cy (g/1.) and width e (see) is introduced via a sample injection loop into a
stream of solvent flowing with volumetriec flow rate 4. This may be repre-
sented as a rectangular pulse with

UC()E = A

and
ue = V,

where A and V, are weight of solute and volume of solution injected, re-
spectively. If eis sufficiently small, the rectangular pulse may be approxi-
mated by an impulse, or delta, function

1/¢ for 0<t<e

5() = 0 for t>eandt <0

such that

Tim C, f “s(hdt = A
)]

c—0
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and

Iimuf sitydt = V,.
0

«e—>0

In this work it is also desirable to consider the introduction of a step input

of solute
lfort>0
1) = {0 for i < 0
such that
uCot-1(t) = A(t)
and

ut-1(8) = V,().

Since both the packed columns and the empty tubing in GPC are actually
cylinders through which solutions flow axially, a differential mass balance in
cylindrical coordinates may be used to formulate mathematical models for
solute dispersion in both:

oc ¢ 19 oc ok
5;——05;+Dn;a<rs;)+l)z.b—z.~, (1)

where ¢ = solute concentration at any point and at any time; » = solution
veloeity at any point (v is, in general, a function of r); and Dg, D, = dis-
persion coeflicients for the solute in solution in the radial and longitudinal
(axial) directions, respectively. This equation refers to a differential ele-
ment located at any point in a eylinder of radius, R, and length, L. The
three terms on the right-hand side describe net convective axial, diffusive
radial and diffusive axial transport rates per unit volume, respectively, at
any point.

Equation 1 may be specialized in order to describe solute dispersion in
either packed columns or empty tubing. For example, when the ratio of
column diameter to particle diameter, dr/d,, in a packed column exceeds a
value of approximately 30, the interstitial solution velocity » may be con-
sidered to be uniform across the column diameter! and simply equal to the
average value 7 everywhere:

v “ 7
= = v
7R2%
where «, the interstitial volume fraction of the column, is
Vo
o=
Vr

and Vy = total volume of the packed column.
It is also well known that Dp < D, in packed columns.2 However, for
pulse and step input functions of the type used in this work, since plug flow
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prevails, 0c/0r = 0 in eq. 1 and the packed column dispersion model be-
comes
o Q%
— 2
2t bz + Loz @
Equation 2 has been used previously.?—5
In empty tubing for a solution under laminar flow conditions

== ()] #[- )]

where v, is the solution velocity at the tube axis. Moreover, Dy = Dy, = D
where D is the molecular diffusivity of the solute in solution. The disper-
sion model for the empty tubing then becomes, from eq. 1,

o r\*1 oc 10 Oc 0%
ot v°[1_(1_i?>]b_z+D[rbr< >+DZ] ©)
Regarding dispersion in the refractometer cell, it is assumed in this work
that the cell behaves like a perfectly mixed vessel of volume V,. This repre-

sents the most extreme model of mixing possible (complete backmixing)
and a mass balance for the solute gives the cell dispersion model

Vc — = f f " co(r)rdodr — uc “)

where ¢ = solute concentration (uniform) in the cell at any time, and c,
= solute concentration at the exit of the empty tubing connected to the
entrance of the cell. The two terms on the right-hand side of eq. 4 repre-
sent transport rate into the cell from the connecting tubing and transport
rate out of the cell, respectively.

To completely describe extraparticle dispersion of a monodispersed
solute in a system which consists of all three of the above components, it is
necessary to solve at least three consecutive differential equations, with the
solution of one being the initial condition for the next, and so on. The
initial condition for the first equation may be a rectangular pulse or a step
function and the solution of the last (eq. 4) should represent the elution
curve as detected by the refractometer. A rectangular pulse input gives
the usual GPC elution curve.

It is instructive from a physical viewpoint to eonsider certain limiting
cases of the dispersion models which identify so-called dispersion regimes.
These regimes lend themselves to simpler mathematical description and
will be introduced here via a characteristic-time approach.

Since a diffusion coefficient is actually defined as a characteristic diffu-
sion length, squared, divided by a characteristic diffusion time, it is reason~
able to define Az = R?/Dy, as a characteristic time associated with radial
dispersion and Ay = L2/D;, as a characteristic time associated with axial
dispersion.
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Moreover, the following definitions are also appropriate: § = V/u =
L/7 is mean residence time in the eylinder and also a characteristic time
associated with convective transport through the eylinder where

V= V, for a packed column, its interstitial volume
~ |V, for an empty tube, its volume

and 8, = V,/u is mean residence time in the cell and also a characteristic
time associated with transport through the cell.
It is now apparent that radial dispersion in the cylinders will be small if

R%
if —— = 1
)\R>>00r1fDRL_Ta>>

and axial dispersion will be small if

)\L>>0orif@_=_PeL>> 1
Dy,
where Pe;, is the well-known longitudinal Peclet number (dimensionless)
and Ta is a dimensionless number which is defined in the present work as
the Taylor number for reasons which will become apparent. In both cases,
as § becomes large, those mechanisms responsible for dispersion in the
cylinder will have more time to occur and therefore will become more pro-
nounced. Thus, dispersion in the cell will become unimportant relative to
the cylinder if ¢, is sufficiently small. This eriterion may be written as

0, K0

or, more precisely,
Ko

where o, and o are the standard deviations for cell and cylinder dispersion,
‘respectively.

The Taylor and Peclet numbers as criteria for the importance of radial
and axial dispersion may be derived in a more formal way by writing eq. (1)
in dimensionless form

e, 11D (20, 1 e
ot* or* Pey, 0z*?

50z* ' Ta r* or ®)

with the aid of the following dimensionless variables:

c r z ¢
F=—rf=_—,2*=_—and t* =-.

co R L ]

The consequences of T'a 3> 1 and Pe; >> 1 are obvious from eq. (5) and the
dispersion regimes previously alluded to may now be introduced.
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THE PACKED COLUMN

For plug flow in a packed column, the dispersion model, eq. (2), in
dimensionless form is

oc* oc* _1_ okc*

= - i 2
YL 3z* | Pey, 2% (22)

and after transformation via z* = z* — ¢¥, it becomes

ot = Poy on% (2b)

Its solution for an impulse solute input,® evaluated at the column exit (z* =

1),is
’Pe,, Pe,, }
% _ — 22— )2
¢ Axt* P { 4¢* ( t)

where C**=CV,/A.

If dispersion in time of an elution curve represented by this funetion is
small relative to the mean residence time in the column, i.e., if {* = 1 with
respect to the entire elution curve, then it may be approximated by the
Gaussian distribution

c** —_ _Iﬁ eXp {_ 1&’ (1 — Vr*)2} (6)
4 4
where V, = ut is retention volume and V,* = V,/u8 = t* is dimensionless
retention volume or time. This approximation has previously been dis-
cussed.’
Clearly the peak value of ¢**, ¢**pnax, In eq. (6) oceurs at the mean value of
t(t=80)orV,(V,* = 1)and the variance oc*?is given by

=) = o

so that o* is actually a measure of relative dispersion of the elution curve.
Thus, if eq. (6) is to accurately represent dispersion in a packed column it
follows that o* must be small. More specifically, this criterion may be
written as

a*? K 1 ort Pey, > 2.

If the elution curve for a pulse solute input is Gaussian, then the elution
curve for a step input® must be

1 Pes,
c* = 5{1 — erfl: ;;Z* a- Vr*)]} )
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where

- Pe
erf'[ gf* a- V,*)] = \/—2—17 fo a7 ¢ =T exp{—grlap

is the error function and { = V' Pe/4V,* (1 — V,*).

In the design of packed-bed chemical reactors, the criterion Pey, > 100
is sufficient to guarantee that the effects of axial dispersion are negligible.
Moveover, engineering correlations? for liquids flowing through packed
columns with values for the Reynolds number Re, in excess of approxi-
mately 0.1 show that the dimensionless number, another Peclet number,

is virtually independent of Re, for a given liquid—particle system and that
for many Newtonian liquid systems it has a value within the region

0.5 < Pe, < 2. ©)

This implies that Dy, is proportional to § and is so because eddy diffusion is
the primary mechanism contributing to axial dispersion. The Reynolds
number for packed columns is defined as
Re, = dytp
I
where p = liquid density and p = liquid viscosity.

As 7 becomes very small, Pe, decreases in proportion to Re, ,which in-
dicates that Dz approaches a constant value of the order of the molecular
diffusivity, D. Van Deemter et al.? have concluded from the data of
Simpson and Wheaton® for the system ethylene glycol-water with molec-
ular diffusivity of the order of 10—% cm?/sec® and particle diameters d,
within the range of 20u to 200 that molecular diffusion played a negligible
role in axial dispersion even for values of Re, less than 0.1.

In GPC the following values are typical: ¥ = 1 ce/min, d, = 50, dr =
0.307 in., L = 4 ft, and « = 0.35, so that dy/d, = 155 and L/d, = 2.4 X
104 Typical approximate values for Re, and Pe;, assuming that inequality
(9) is still valid, are then approximately

Re, = 0.05 and 104 < Pe; < 5 X 104

Thus, it might be reasonable to expect dispersion in the packed column to
be small in the relative sense, symmetrical (Gaussian) and insensitive to
molecular weight of the solute. The last conclusion is based upon the fact
that D for ODCB (in toluene) also has a value of the order of 10—5 ecm?/sec
and D for polymers is even two orders of magnitude smaller. For example,
D for polystyrene (in toluene)® is of the order of 10~7 em?/sec. This
means that eddy diffusivity and not molecular diffusivity probably domi-
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nates D under typical GPC conditions. If this is the case, then a sample
calculation for, say, V, = V, = 21 cc using eq. (7) shows that the following
approximate values for absolute dispersion o might be expected:

0.1 min < ¢ < 0.3 min
or, in terms of retention volume,
0.1 cc < 0, < 0.3 ce.

There is, however, certainly some justification for caution when specu-
lating about eddy diffusion in polymer solutions in view of the fact that
polymers, even at low concentrations, not only dramatically affect the
viscosity of the solvents in which they are dissolved but may also cause
them to exhibit viscoelastic or other non-Newtonian flow behavior. Very
little data are available on dispersion in polymer solutions flowing through
packed columns. However, there is some evidence!! that Pe, is indepen-
dent of Re, to values of Re, as low as 0.03 and that it has a value of approxi-
mately 0.2, slightly less than the lower value used in the above example.

The conventional efficiency parameters used in chromatography may
also, in modified form, be used to characterize extraparticle dispersion.
These are: plate count n, now actually the number of theoretical mixing
stages; and HETP, now actually the height equivalent to a theoretical
mixing stage:

2
nE(g) = %EandHETPE

g

Clearly, when Pe, = 2, the column may be represented by the equivalent
model of L/d, mixers in series, as follows:

n = dL— and HETP = d,.

P

THE EMPTY TUBING

For typical GPC flow rates, tube diameters and solute concentrations,
say, 1 cc/min, 1 mm and 2 g/l. Newtonian laminar flow conditions should
prevail with

dﬂjﬂ

Re = — ~ 30.
m

Dispersion should then depend on the molecular diffusivity of the solute
(Dr = D = D) and therefore on its molecular weight.

It is evident from eq. (5) that two extreme, distinctly different dispersion
regimes are possible and that both are subject to simple mathematical
analysis. The first will be called the segregated flow regime and the second,
the Taylor regime.
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The Segregated Flow Regime
This regime is approached when both

R2j L3
a_DL>> and e-—D>>1

and clearly occurs when D is small, as with large molecules. However, it
may also occur for constant 1 when L is small or R is large, and it obeys the
simple dispersion model

% * x
- E Y L (30)

whose solution for a rectangular pulse input, evaluated at the tube exit
(&* = 1),is

The elution curve for segregated flow, obtained from

B

f 2w, *v(r)rdr 1

¥ ¥Ye 000 _ (] k2K
c R 4]; c.*(1 r¥2)r¥dr

is, for a rectangular pulse input,
5 o\? 0. 2
c= co{[l -~ ((%) ]l(t —0.58) — [1 — <t~ﬂ) ]l(t —€— 0.50)}
. €
(10a)
or, in dimensionless form,

R )

X 1(V,* — V,* — 0.5) (10b)

where V,* = V,/uf = ¢* is dimensionless sample injection volume or time.
For a step solute input, the solition of eq. (3a), evaluated at the tube

exit, 1s
0.5
* * _ Y
G lb a—rw]

and, therefore, the elution curve is simply

c=c {[1 - (0—?—0)2] 1¢— 05 0)} (11a)

or, in dimensionless form,

o* = [1 - (%f*)le(v,* ~ 0.5). (11b)
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An elution curve represented by egs. (10a) or (10b) is highly unsymmetri-
cal (skewed). Its peak lies to the left of its mean and it has a long tail.

The Taylor Regime
This regime is approached when
R%
Toa=— K1 12
and
Lj
Pe= D > 1. 13)

The first criterion, inequality (12), which may also be written as

L R’
5D’

is obviously met when D becomes large; however, it is compatible with the
second, inequality (13), for constant u only when R? << L2or R <K L.

This type of dispersion was first analyzed by Taylor!? who gave a more
precise eriterion for its existence than inequality (12a), namely,

Ly 2E
77 (3.8)D

and is now commonly referred to as “Taylor axial diffusion.” It is called
axial diffusion although it is actually a manifestation of the combined effects
of a velocity profile and radial molecular diffusion with the virtual absence,
or at least comparative unimportance, of true (molecular) axial diffusion.
The reason for this is, in essence, the remarkable fact that radial diffusion, if
given the opportunity, partially cancels the dispersion effect of the velocity
profile in such a way as to give the resultant dispersion the appearance of
being genuine axial diffusion; it even obeys the usual axial dispersion model,
eqs. (2), (2a), or (2b), with Dz given by!2

_ 4Rw?
192D

(12a)

(14)

Dy, (15)

As a consequence, the elution curve in the Taylor regime for a pulse
solute input is symmetrical (Gaussian) and is described by eq. (6) if relative
dispersion is small in the sense previously discussed. That this must be
the case may be seen by combining inequality (14) with eq. (15), which gives

Ly
PeLEITL>>7.

Thus, it appears that a system in order merely to qualify for the Taylor
regime exhibits small relative dispersion.
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An order-of-magnitude calculation for the Taylor regime shows that when
Pey, has a reasonable value of, say, 200, in order for ¢, to have a value com-
parable to that of one packed column, say, 0.2 ce, it is necessary to have 100
in. (L) of empty tubing when « = 1 ¢c¢/min and d; = 1 mm. This result is
obtained from eq. (7) and requires that D for the solute have a value of ap-
proximately 9 X 10—% cm?/sec, from eq. (15). Furthermore, from inequality
(14), ODCB in toluene may just qualify for the Taylor regime in 100 in. of
empty tubing; certainly then, polystyrene (D ~ 10-7) in toluene will not.

General Case

When dispersion in empty tubing is unsymmetrical and broader than ex-
pected of Taylor axial diffusion and yet does not meet the requirements of
the segregated flow regime, eq. (3) must be solved for the appropriate input
functions. No analytical solution of this equation is available but a
numerical method for solving it with the aid of a high-speed digital com-
puter has been developed?!? for step input functions.

It is reasonable to expect polymer solutions flowing through empty
tubing to exhibit dispersion between the two regimes and to expect the
shape as well as the breadth of this dispersion to be sensitive to molecular
weight of the polymer, certainly to a greater degree than in packed columns.

THE REFRACTOMETER CELL

In order to compute the solute concentration “seen” by the detector
(refractometer) and include the dispersion caused by the refractometer cell
itself, i.e., to simulate as accurately as possible the actual elution curves,
it is necessary to substitute the appropriate solution of eq. (1), evalu-
ated at the cell entrance, for ¢, in eq. (4) and solve the resulting equation
for ¢. For the special cases considered in this work it is sufficient to
replace the entire integral in eq. (4) with uc(f) either from eqs. (6) or (8),
if the column is connected directly to the refractometer cell, or from eqs.
(10a) or (11a), when tubing is connected to the cell, which is the usual case.
The reason for this is that the integration operation is tantamount to cup-
averaging'* the solute concentration issuing from the tubing. For the
packed column v is constant and 9c¢/dr = 0 so that cup-averaging is
unnecessary. For the empty tubing, the integration has already been
performed; in fact, it is precisely the operation used to transform the solu-
tions of eq. (3a), evaluated at the tube exit, into eqs. (10a) and (11a).

Dispersion in the completely backmixed cell model, eq. (4), is given by
the simple expression

o, = Ve = 0. (L6)

u
For a standard Waters Associates refractometer cell (V, = 0.07 ce) and
a typical flow rate, v = 1 c¢/min, dispersion in the cell, ¢, = 6, = 0.07
min, is small relative to that in a typieal packed column (V, = 21 ¢c) or
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empty tube (V, ~ 0.02 ec/in.). Thus, approximate elution curves may
be computed directly from eqs. (6) or (8) when little or no tubing is present
between column and cell and from egs. (10b) or (11b) when an appreciable
length of tubing is connected to the cell inlet.

It is appropriate at this point to elaborate briefly on the concept of
relative dispersion, ¢/8, which has been discussed elsewhere in connection
with distribution of residence times in separation processes’ and molecular
weight distributions of polymers.’5:1¢ It is well known that the standard
deviation o is a measure of absolute breadth or dispersion of any distri-
bution. However, absolute breadth is not always the most appropriate
parameter with which to characterize a distribution having a physical
origin; the selection of an appropriate parameter depends upon the precise
nature of the information desired. For example, the dispersion index

=t _ -@ 21
v My
is used by polymer scientists and engineers to characterize molecular weight
dispersion in polymers, where £y, My = number-average degree of poly-
merization and molecular weight, respectively, and %,, M, = weight- -
average degree of polymerization and molecular weight, respectively.

What is actually desired in this case is a measure of the effect of molecular
weight distribution on the physical properties of a polymer. For the
same value of absolute molecular weight dispersion, o, this effect will clearly
be more pronounced in a polymer having a low average molecular weight,
Zx, than in one having a high average. Hence, a measure of relative
dispersion, ox/%y, is actually desired, i.e., absolute breadth of the distribu-
tion relative to the mean size of the molecules. Since this is what D
actually measures, as seen from the relationship

() -o-
XN

it appears to be an appropriate parameter to use in this case.

Similarly, in the design of packed bed reactors or chromatographic
columns, a large value for n indicates an effieient reaction or separation
column. The reason for this is, again, that relative dispersion (1/n) is
the important parameter since it measures dispersion in the column relative
to its total reaction or separation capability.

Now, in the case of extraparticle dispersion in GPC columns or in the
empty tubing, 2/Pe; characterizes relative dispersion, whereas o charac-
terizes absolute dispersion. However, the latter quantity is actually
what is measured by the detector. Hence, even though Pe; may be
larger for packed GPC columns than for the empty tubing, it is still possible
for o to be larger as well, depending upon the relative values for 8. Thus,
the packed column might affect chromatogram resolution more seriously
than the empty tubing.
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In conclusion, then, when contrasting the dispersion effects of columns
versus empty tubing, it is important to compare V, and V, as well as the
values for Pe;.
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